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EFFECT OF EVAPORATION OF LIQUID DROPLETS ON THE DISTRIBUTION

OF PARAMETERS IN A TWO-SPECIES LAMINAR FLOW

UDC 536.24V. I. Terekhov, M. A. Pakhomov,1 and V. V. Chichindaev1

A calculation model was developed, and the heat- and mass-transfer characteristics in a lami-
nar air–vapor–droplet flow moving in a round tube were studied numerically. The distributions
of parameters of the two-phase flow over the tube radius were obtained for varied initial concen-
trations of the gas phase. The calculated heat and mass transfer is compared to experimental
data and calculations of other authors. It is shown that evaporation of droplets in a vapor–gas
flow leads to a more intense heat release as compared to a one-species vapor–droplet flow and
one-phase vapor flow.

Introduction. Theoretical research on problems of flow and heat-transfer simulation in two-phase
and multispecies flows is described in [1–3].

The heat transfer in a two-phase gas–droplet flow containing small droplets of water may correspond
to the presence or absence of a liquid film on the heated surface [1]. In the first case, which is observed for
a comparatively low temperature of the wall, the boundary layer consists of two regions: an internal liquid
layer on the wall and an external dispersed boundary layer. Aihara et al. [4] studied the heat transfer on a
wedge-shaped body. An increase in heat transfer by a factor of 10 to 30 as compared to a one-phase gas flow
was registered. The second case is characterized by the absence of the liquid film on the wall; it is observed
under conditions where the liquid droplets evaporate before they reach the surface or at the moment of their
deposition on the wall.

Heat transfer in a laminar mist flow on a dry isothermal plate was studied theoretically and experimen-
tally in [5]. The effect of droplets and their evaporation on the boundary-layer structure was analyzed for the
case of a low concentration of small particles of size up to 3 µm. A similar case of dispersed flow was studied
taking into account heat transfer in various internal flow regimes [6–14]. As is shown in [6], apart from criteria
that characterize the one-phase heat-transfer regime, there are three dimensionless parameters in a vapor–
droplet flow, which determine the heat transfer in the two-phase flow regime. An analysis of their influence
on heat-transfer intensity revealed the range of heat-transfer coefficients depending on the initial parameters,
the length of the zone of existence of a two-phase flow, the character of droplet-diameter variation, and other
features of heat transfer in a two-phase vapor–droplet flow. Crowe et al. [12] studied numerically the pro-
cesses of momentum, energy, and mass transfer in a gas–droplet flow using the model droplet–internal drain
[Particle-Source-In Cell (PSI-CELL)]. The model is based on a hypothesis according to which the droplets
are an internal source of vapor mass, momentum, and energy in the gas phase. The PSI-CELL model takes
into account complex processes between the phases typical of multiphase flows. This model is also applicable
in studying combustion problems. Using this hypothesis, Sijercic′ et al. [13] constructed a model that takes
into account the forces of drag and gravity.
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It should be noted that most numerical studies deal with heat and mass transfer in one-species vapor–
droplet flows.

In this work, numerical schemes of the heat-transfer process are constructed, and a parametric analysis
in laminar two-species gas–vapor–droplet flows is performed. The problem formulation as a whole is similar
to those in [6, 7]. However, here we study more complex air–vapor–droplet flows, where it is necessary to
solve jointly the energy and diffusion equations for the vapor–gas mixture. These studies are also of interest
in practical applications for calculating systems of two-phase cooling of the elements of energy equipment,
devices for air conditioning, and other devices of chemical technology and power engineering.

1. Formulation of the Problem. In this paper, we consider a two-dimensional stabilized steady
two-phase gas–vapor–droplet flow in a tube, taking into account evaporation of liquid droplets. The present
study was performed under conditions where the near-wall annular film of the liquid is already dry (i.e., the
wall temperature is higher than the Leidenfrost temperature for droplets). Conductive heat transfer caused
by the droplet–wall contact is negligibly small as compared to the contribution of convective heat transfer
between the vapor and the wall [6]; radiant heat transfer is also ignored. The droplets in a vapor–gas flow
serve as a distributed output of heat and a source of vapor. The mixture transfers heat to liquid droplets,
and the vapor generated thereby is heated to the temperature of the main vapor–air flow.

It is known that the velocity profile of a one-phase liquid of a hydrodynamically stabilized surface has
a parabolic form [15]. It was assumed that this shape of the profile is also retained for a two-phase flow, and
droplet evaporation increases only the mass-mean velocity of the vapor as the dispersed mixture moves along
the channel.

The temperature distribution of the vapor and droplets in the entrance cross section of the tube is
uniform, and the vapor may be overheated above the saturation temperature at this partial pressure. The
particle temperature over its diameter was also assumed to be constant, since according to the estimates of
[16], the Biot number is Bi = α0dP1/λP < 0.1, where α0 is the heat-transfer coefficient of a nonevaporating
particle, dP1 is the initial diameter of the droplet, and λP is the thermal conductivity of the liquid phase.

All particles at the tube entrance have an identical size, and the number of particles per unit volume
(numerical concentration) is also constant, the latter condition being valid for the whole flow region. In zones
where complete evaporation of droplets occurs, their numerical concentration is simulated by pseudoparticles
of zero diameter.

The temperature gradient of the vapor–gas phase arising due to the heat transfer to the tube wall
makes the evaporation process nonuniform over the tube radius; therefore, the particles in the near-wall
region are smaller than those in the axial region. This, in turn, changes the mass concentrations of the gas,
vapor, and liquid over the cross section and along the tube.

Two types of boundary conditions on the inner surface of the tube are considered: a regime with a
constant heat-flux density on the wall (qW = const) and a regime with a constant temperature of the wall
(TW = const). The case predominantly studied in this paper is qW = const.

2. Governing Equations and Boundary Conditions. At the section with a hydrodynamically
stabilized flow, from the equation of motion for the streamwise velocity, we have a parabolic profile [15]:

WX = 2W̄ [1− (r/R0)2], (1)

where W̄ is the mean flow rate of the mixture in the current cross section of the tube, R0 is the tube radius,
and r is the current transverse coordinate.

Taking into account the assumptions used, we describe the heat and mass transfer in an axisymmetric
vapor–gas–droplet flow by a system of energy and diffusion equations for a vapor–gas mixture [3, 7]:
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Here ρΣ and λΣ are the density and thermal conductivity of the vapor–air flow, α0 is the coefficient of
heat transfer to nonevaporating droplets, CpΣ, CpA, and CpV are the specific heat capacity of the vapor–air
mixture, air, and vapor, T and TP are the temperatures of the mixture and the droplet, x is the longitudinal
coordinate, n is the numerical concentration of liquid droplets in the tube, D1−2 is the coefficient of vapor-
to-gas diffusion, KV is the mass concentration of vapor in a binary vapor–air mixture, jS is the transverse
flow of vapor on the surface of the evaporating droplet, and dP is the current diameter of the droplet.

The energy and diffusion equations have source (drain) terms that describe heat removal from the gas
phase and vapor-mass supply due to evaporation of particles. They are represented by the second terms in
the right part in Eqs. (2) and (3). In addition, the energy equation (2) in the right part contains a term
caused by diffusive heat transfer in the vapor–gas phase.

Relations (2) and (3) are supplemented by the heat-transfer equation at the interface

CpPρP
πd3

P

6
dTP
dτ

= απd2
P (T − TP )− jSπd2

P [L+ CpV (T − TP )] (4)

(CpP is the specific heat capacity of the liquid, ρP is the liquid density, α is the coefficient of heat removal
of the evaporating droplet, and L is the latent heat of evaporation) and the equation of conservation of the
vapor mass on the evaporating droplet surface [3]

jS = jSKV S − ρVD1−2

(∂KV

∂r

)
S
, (5)

where KV S is the mass concentration of vapor on the particle surface corresponding to saturation parameters
at a droplet temperature of TP . According to [17], the quantity α in (4) is related to the heat-transfer
coefficient α0 by the following formula:

α =
α0

1 + CpΣ(T − TP )/L
. (6)

The heat-transfer law for a nonevaporating droplet is determined from Drake’s formula [2]:

Nu = 2 + 0.457 Re0.55
P Pr1/3, (7)

where Nu is the Nusselt number, ReP = ∆WdP /νΣ is the particle Reynolds number based on the phase-slip
velocity, ∆W is the velocity of the vapor–air mixture relative to the droplet, νΣ is the viscosity of the vapor–
air mixture, and Pr is the Prandtl number of the mixture. The heat-transfer coefficient to finely dispersed
droplets in the absence of phase slipping is described by the relation Nu = α0dP /λΣ = 2; hence, we have
α0 = 2λΣ/dP .

Taking into account that the diffusion Stanton number is determined as

StD = −ρVD1−2

(∂KV

∂r

)
S

/
ρΣ∆W (KV S −KV ), (8)

the equation of conservation of mass (5), taking into account Eq. (8), can be written in the form

jS = StDρΣ∆Wb1D, (9)

where

b1D = (KV S −KV )/(1−KV S) (10)

is a diffusion parameter of vapor blowing from the evaporating particle and ρV is the vapor density.
For finely dispersed particles in the absence of phase slipping (∆W = 0), the mass transfer between

the droplets and the mixture is described by the known relations [3] Sh = βdP /D1−2 = 2 and StD =
(Sh/ReP ) Sc = (2/ReP ) Sc, where Sh and Sc are the Sherwood and Schmidt numbers, respectively, and β is
the mass-transfer coefficient. Then Eq. (9) is transformed to

jS = 2D1−2ρV b1D/dP , (11)
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and the permeability parameter b1D is determined from Eq. (10) using the saturation curve.
The equation of material balance for a binary vapor–air mixture has the form

KV +KA = 1, (12)

where KA is the mass concentration of air in the binary vapor–air mixture. For a ternary mixture vapor–
gas–liquid, this equation is written as

CV + CA + CL = 1, (13)

where CV , CA, and CL are the mass concentrations of the vapor, air, and liquid.
The relations between the values of mass concentrations may be written in the following form:

KV =
CV

CV + CA
, KA =

CA
CV + CA

= 1−KV . (14)

The expression for calculating the current diameter of the droplet dP is obtained from the relation

CP = mPn, (15)

where mP is the mass of the liquid particle. After transformations, taking into account that mP = ρPπd
3
Pn/6,

we obtain from (15)

dP = 3

√
6CP
πρPn

. (16)

Relations (2)–(16) form a closed system of equations that describe the heat- and mass-transfer processes
in a vapor–gas–droplet flow and allow one to calculate all the sought quantities (temperature distribution,
enthalpy, and concentrations of the phases and components of the vapor–gas mixture), determine the character
of variation of particle sizes, and analyze the degree of heat-transfer intensification due to the evaporation
processes.

The boundary conditions for the temperature and concentration of the components of the vapor–gas
mixture are written in the form

∂T

∂r
= 0,

∂KV

∂r
= 0,

∂U

∂r
= 0 for r = 0,

λΣ
∂T

∂r
= qW (qW = const) or T = TW = const,

∂KV

∂r
= 0 for r = R0.

The temperature of the vapor–gas mixture and particles at the entrance and the concentrations of the
vapor, gas, and droplets were assumed to be constant over the cross section: T = T1, TP = TP1, dP = dP1,
KV = KV 1, KA = 1−KV 1, and CP = CP1 for x = 0.

The Nusselt number for a constant heat-flux density on the wall was determined from the difference
between the wall temperature and the mass-mean temperature of the vapor–gas mixture:

Nu =
qW 2R0

λΣ(TW − Tm)
. (17)

The mass-mean temperature in (17) was found by integration of the temperature field over the tube cross
section:

Tm =
4
R2

0

R0∫
0

T
(

1−
( r

R0

)2)
r dr.

The concentrations of components of the gas and liquid phases averaged over the tube diameter were calculated
in a similar manner.

1023



3. Calculation Algorithm and Verification of Reliability of the Numerical Model. Equations
with the corresponding boundary conditions were solved numerically using finite-difference schemes. The
algebraic system was solved using the Thomas algorithm [18]. The steps in the longitudinal and transverse
directions were 1 and 0.01 diameter, respectively. The tube length was 2 m and its inner diameter was 0.02 m.
The thermophysical properties were calculated using the formulas derived in [19].

In the absence of the liquid phase and air, the numerical solution with an error of less than 2%
corresponds to the numerical solution of the problem of heat transfer in a stabilized one-phase flow, which
was proposed by Kutateladze [15]. For comparison, the data of the numerical analysis of [6] were used in the
two-phase flow regime. Good agreement was obtained between the calculations by the present model and
numerical calculations for a stabilized vapor–droplet flow [7].

4. Calculation Results, Discussion, and Comparison with Experiment. The results of
studying the effect of parameters of a two-phase flow on heat and mass transfer in the tube are presented
below. The main focus was on the effect of the gas concentration on the change in flow characteristics and
heat-transfer intensification. The data obtained in the present work were compared to the results of [7] on
heat transfer in vapor–droplet flows for a gas concentration of CA = 0.

The calculations were performed for a mixture of water vapor and air (at atmospheric pressure) in
the presence of liquid particles of water in the mixture. The initial parameters were varied within the
following ranges: the temperature of the vapor–gas mixture at the entrance was 100–150◦C, the flow velocity
was 0–2 m/sec, the flow Reynolds number was 200–2000, the droplet diameter was 1–100 µm, and the
mass concentrations of droplets and air were 0–0.1 and 0–0.8, respectively. The calculations yielded the
temperatures of droplets and the vapor–air mixture, the mass concentrations of all components, the droplet
diameter, and the heat transfer to the tube surface.

Figure 1 shows the calculation results in the form of dimensionless temperature profiles Θ = (T −
TW )/(T0 − TW ) over the tube cross section for various values of the mass concentration of air. The fixed
quantity in these calculations was the Reynolds number based on the input parameters. Curve 1 in Fig. 1
is the temperature profile in the one-phase vapor–flow regime, and curve 2 refers to the vapor–droplet flow
without air (CA1 = 0). As is shown in Fig. 1, an increase in the concentration of air at the entrance increases
the fullness of the temperature profile, which intensifies the process of heat transfer to the tube surface. The
calculations show that this pattern is observed for different flow rates and phase concentrations at the tube
entrance.

The greater fullness of the temperature profile is primarily caused by the more active heat exchange
between the droplets and vapor–gas mixture with a high concentration of air during evaporation. Indeed,
with increasing CA1, the diffusive transfer of vapor from the particle surface to the ambient flow increases,
which increases the droplet-evaporation rate.

Figure 2 shows the calculation results for the particle size for different concentrations of air, other
conditions being equal. An analysis of the data in Fig. 2 allows us to draw the following conclusions. The
evaporation processes are more intense in the near-wall zone with a higher temperature. The small plateau
near the tube centerline, especially for low concentrations of air, is caused by the low value of the temperature
gradient in this region and, as is shown below, by the higher relative mass concentration of vapor in the axial
region. The main conclusion is the significant decrease in the droplet size with increasing concentration of
air in the mixture. The zone of the one-phase flow regime, where liquid droplets are absent, significantly
increases (Fig. 2).

Obviously, the processes of heat and mass exchange between the liquid phase and the vapor–gas mixture
and also the heat exchange with the tube surface are interrelated. Therefore, a more detailed description of the
mechanism of heat- and mass-transfer processes requires the study of evolution of the concentration profiles
of both the liquid phase and the components of the vapor–gas mixture along the tube (Fig. 3). The mass
concentration of the liquid phase (Fig. 3a) decreases continuously along the channel, and the concentration
of the vapor being formed (Fig. 3b) increases; in particular, for the conditions considered (CP1 = CV 1 = 0.1)
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Fig. 1 Fig. 2

Fig. 1. Distribution of the temperature profile of the air–vapor–droplet mixture over the tube radius
for different mass concentrations of air at the entrance (x/D = 5, dP1 = 30 µm, ReD = 1800, qW =
200 W/m2, T1 = 373 K, TP1 = 283 K, and CP1 = 0.1) for CA1 = CP1 = 0 (1) and CA1 = 0 (2), 0.01 (3),
0.1 (4), 0.2 (5), 0.5 (6), and 0.8 (7).

Fig. 2. Size of evaporating droplets versus the mass concentration of air (parameters are the same as in
Fig. 1) for CA1 = 0 (1), 0.01 (2), 0.1 (3), 0.2 (4), 0.5 (5), and 0.8 (6).

as x/D → 10, it increases twofold. The mass concentration of air is distributed nonmonotonically over the
tube radius (Fig. 3c). Local minima of the concentration of air are formed in regions of the most intense
evaporation; moving along the tube, these minima become less pronounced and are shifted toward the tube
centerline.

The parameter of heat-transfer intensification, which is the ratio Nu/Nu0, where Nu0 is the Nusselt
number in the one-phase vapor flow for an identical Reynolds number at the entrance, depends on the above-
mentioned features of the structure of thermal fields and concentrations of the two-phase vapor–gas–droplet
flow. The results of these calculations are plotted in Fig. 4. The heat-transfer intensification is the least
(Nu/Nu0 < 1.5) for the one-species vapor–droplet flow (curve 1). As the mass concentration of air increases,
the heat transfer becomes noticeably more intense, but the length of the zone of intensified heat transfer
along the channel significantly decreases.

The data in Fig. 4 should be considered as an illustration, since the process considered is multipara-
metric; hence, the degree of intensification is a function of a large number of thermodynamic parameters. A
detailed study of their effect on the heat-transfer processes is outside the scope of the present work.

The hypotheses on which the model proposed was based were verified by an indirect comparison with
available experimental data on heat transfer.

There are a limited number of papers that contain data on heat transfer in two-phase vapor–gas–
droplet flows in tubes. Hishida et al. [10] considered a developing laminar mist flow at the initial section of a
plane channel; therefore, the results obtained in that work cannot be used for comparison with the numerical
model developed. There are almost no experimental data in the literature for a hydrodynamically stabilized
vapor–gas–droplet flow in a tube. An exception is [8], where the process of heat transfer in the flow of a
water–air aerosol in a compact heat exchanger was studied. The results of [8] were used for comparison with
the present calculations (the change in the wall temperature along the heat-exchange section was compared).
The calculations and experiments were performed for the following test-section parameters: length l = 0.24 m,
equivalent diameter of the tube deq = 2.67 mm, x/D = 0–80, maximum Reynolds number Reeq = 8 · 103,
mass concentration of droplets CP1 = 0–0.03, and droplet diameter dP1 = 1–2 µm. The experiments were
performed in the regime of a constant heat flux on the wall (qW = const).
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Fig. 3. Distribution of the mass concentration of the components of the mixture over the tube radius for
the liquid phase (a), vapor (b), and air (c) (parameters are the same as in Fig. 1) for x/D = 0 (1), 1 (2),
2 (3), 5 (4), 7 (5), and 10 (6).

The numerical and experimental data are compared in Fig. 5, which shows the wall-temperature
distribution along the tube of the heat-exchange channel. It follows from Fig. 5 that the calculation results
by the present model are in good agreement with the experimental data. A typical behavior of the wall
temperature for the calculated and experimental data is its monotonic increase along the channel. The
more significant discrepancy between the calculated and experimental data in the beginning of the channel
is explained by the influence of the initial section, which is associated with the development of a dynamic
boundary layer in the experiments. The difference between the calculated and experimental data in this
region is 20–25%. The difference on the major part of the channel is less than 10%.

Thus, the model developed gives an adequate qualitative and quantitative description of the heat and
mass transfer in a two-species, two-phase flow in the presence of phase transformations. At the same time, this
model cannot describe all the special features of interrelated dynamic and heat- and mass-transfer processes.
The construction of such a model requires more detailed experimental and numerical studies.

Conclusions. A physical model of the joint heat and mass transfer in a laminar gas–vapor–droplet
flow in a tube was developed. In this model, the liquid phase is a localized output of heat and a source of
mass (vapor). A closed system of transport equations is derived, which includes the equation of energy with
a source term, the diffusion equation for the vapor–gas mixture with a source, and the equations of heat and
mass transfer for a single droplet. A numerical algorithm for solving this system of equations was developed.

The heat and mass transfer in a laminar two-phase vapor–droplet flow in a round tube was numerically
studied.
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Fig. 4 Fig. 5

Fig. 4. Distribution of the heat-transfer intensification parameter in the vapor–gas–droplet flow along the
tube (parameters the same as in Fig. 1) for CA1 = 0 (1), 0.01 (2), 0.1 (3), 0.2 (4), 0.5 (5), and 0.8 (6).

Fig. 5. Wall-temperature distribution along the tube for qW = 0.8 (1) and 0.4 kW/m2 (2); the curves
and points refer to the calculation and experiment [8], respectively.

It is shown that an increase in the mass concentration of air leads to the intensification of heat transfer as
compared to a one-species flow. A comparison of the calculated results with experimental data demonstrates
their qualitative and quantitative agreement.

This work was performed within the framework of the Federal goal-oriented program “State support of
integration of higher education and fundamental science” (grant No. 330) and was supported by the Russian
Foundation for Fundamental Research (grant No. 98-02-17898).
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